An evolving neuro-fuzzy system based on uni-nullneurons with advanced interpretability capabilities

نویسندگان

چکیده

This paper proposes a hybrid architecture based on neural networks, fuzzy systems, and n-uninorms for solving pattern classification problems, termed as ENFS-Uni0 (short evolving neuro-fuzzy system uni-nullneurons). The model can produce knowledge in an on-line (single-pass) learning context particular form of rules representing the dependencies among input features through IF-THEN type relations. antecedents are thereby realized uni-nullneurons, which constructed from n-uninorms, leading to possibility express both, AND- OR-connections (and mixture these) single antecedent parts rule thus achieving advanced interpretability aspect rules). neurons’ evolution is done extended version autonomous data partition method (ADPA). On-line interpretation timely addressed by (i) concept tracking degree changes over stream samples, may indicate experts/operators how much dynamics process be used structural active component request operator’s feedback case significant (ii) updating feature weights incrementally. These (possibly changing) impact degrees problem: with low seen unimportant masked out when showing expert (? length reduction). rules’ consequents represented certainty vectors recursively updated indicator-based recursive weighted least squares (I-RWLS) approach (one RWLS estimator per class) where given neuron activation levels order gain stable local learning. proposed this was successfully compared related approaches literature classifying binary multi-class patterns. results obtained show outperformance works terms higher accuracy trend lines time, while offering high coherent solve problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

designing unmanned aerial vehicle based on neuro-fuzzy systems

در این پایان نامه، کنترل نرو-فازی در پرنده هدایت پذیر از دور (پهپاد) استفاده شده است ابتدا در روش پیشنهادی اول، کنترل کننده نرو-فازی توسط مجموعه اطلاعات یک کنترل کننده pid به صورت off-line آموزش دیده است و در روش دوم یک کنترل کننده نرو-فازی on-line مبتنی بر شناسایی سیستم توسط شبکه عصبی rbf پیشنهاد شده است. سپس کاربرد این کنترل کننده در پهپاد بررسی شده است و مقایسه ای ما بین کنترل کننده های معمو...

An Evolving Neuro-Fuzzy System with Online Learning/Self-learning

A new neuro-fuzzy system’s architecture and a learning method that adjusts its weights as well as automatically determines a number of neurons, centers’ location of membership functions and the receptive field’s parameters in an online mode with high processing speed is proposed in this paper. The basic idea of this approach is to tune both synaptic weights and membership functions with the hel...

متن کامل

Insights into Interpretability of Neuro-Fuzzy Systems

Neuro-fuzzy networks revealed their proficiency in learning from data, while offering a transparent and somehow interpretable rule-based model. Recent research focused either on the interpretability of the chosen model or on the system performance. Regarding the interpretability, here an index to control the trade-off between complexity and performance, some insights into fuzzy partitions prope...

متن کامل

Interpretability and learning in neuro-fuzzy systems

A methodology for the development of linguistically interpretable fuzzy models from data is presented. The implementation of the model is conducted through the training of a neuro-fuzzy network, i.e., a neural net architecture capable of representing a fuzzy system. In the /rst phase, the structure of the model is obtained by means of subtractive clustering, which allows the extraction of a set...

متن کامل

An Artificial Intelligence Based Neuro-Fuzzy System with Emotional Intelligence

In a very real sense we have two minds, one that thinks (rational mind) and one that feels (emotional mind). These two fundamentally different ways of knowing interact to construct our mental life. This results in two different kinds of intelligence i.e, rational and emotional. Intellect cannot work at its best without emotional intelligence. If our aim in AI is to build systems that behave lik...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Neurocomputing

سال: 2021

ISSN: ['0925-2312', '1872-8286']

DOI: https://doi.org/10.1016/j.neucom.2021.04.065